
©2023 IEEE

Translating Custom Language to Assembly: A

Python-Based Parser, Lexer, and Compiler

1st Kevin Huy Trinh

St. Mary’s University

Ronald E. McNair Program

San Antonio, United States

kevintrinh1227@gmail.com

Abstract—This paper presents a Python-based toolset for

translating custom language code into assembly language for a

virtual machine. The toolset includes a lexer module for

tokenizing the code, a parser module for generating an abstract

syntax tree (AST), and a compiler or semantic analyzer module

for translating the AST into assembly language instructions. The

research focuses on the design and implementation of these

components, utilizing top-down recursive parsing. Extensive

testing ensures accurate translation and execution of custom

language code. The toolset's flexibility enables future

enhancements and support for diverse virtual machine

architectures. The results demonstrate successful translation,

highlighting the power and versatility of the developed toolset.

This research advances language processing and compiler

design, facilitating the seamless execution of domain-specific

languages on virtual hardware platforms.

Keywords—Language processing, Custom language, Parser,

Lexer, Semantic Analyzer, Virtual machine

I. INTRODUCTION

A. Research Topic and Background

Computer programming languages are essential tools in
the field of software development. They enable programmers
to develop a wide range of systems and applications that are
used in our daily lives. These languages have allowed
innovators to communicate their ideas to machines in a
human-readable format. However, computers can only
understand instructions in a specific format known as
machine code or machine language. Machine code is a low-
level language that computers can directly understand and
execute and can be exhibited in diverse variations consisting
of but not limited to binary, assembly language,
hexadecimal, and octal.

B. Research Objective and Significance

The research objective is to develop a comprehensive
toolset for translating code written in the custom language
into assembly language for a virtual machine. By designing
and implementing a robust parser, lexer, and compiler for a
general-purpose custom language, this research aims to
enable seamless execution of programs on virtual hardware
platforms. This toolset will empower developers to
efficiently create and execute specialized applications,
expanding the possibilities of application development and
enhancing software performance. The significance of this
research lies in its potential to bridge the gap between high-
level custom languages and low-level machine code, offering
a practical solution for efficient code translation and
execution. By addressing this challenge, this research
contributes to the advancement of language processing and
compiler design, facilitating the development of domain-

specific languages and their seamless execution on virtual
hardware platforms.

C. Research Approach and Methodology

The project follows a systematic approach to designing
and implementing a comprehensive toolset for translating
code written in a custom general-purpose language into
assembly language using Python. The methodology involves
several key steps. Firstly, the project begins with the design
phase, where the lexer module is specified to identify
meaningful tokens based on the predefined grammar rules
and regular expressions. Once the lexer was developed, a
parser module was implemented to generate an abstract
syntax tree (AST), representing the hierarchical structure of
the code according to the grammar defined in Backus-Naur
Form (BNF). Next, the compiler or semantic analyzer
module is implemented to traverse and translate the AST into
assembly language instructions specific to a virtual machine.
Extensive testing is conducted using a comprehensive set of
test cases that cover various grammar and semantic aspects
of the custom language. The testing phase ensures accurate
translation and execution of custom language code into
assembly language, validating the effectiveness and
reliability of the parser, lexer, and compiler modules. By
following this project approach and methodology, a robust
and efficient toolset is created for seamless code translation
and execution using Python, specifically tailored for the
custom language developed.

II. LITERATURE REVIEW

A. Language Design and Parsing

In the process of designing a programming language, a
crucial aspect to consider is the language's grammar. The
grammar, often defined using a formal notation such as
Backus-Naur Form (BNF), dictates the set of rules that
determine syntactically valid programs in that language [1].
These rules provide the structured blueprint that a parser will
use to interpret the code.

<assignment> ::= <type> <identifier> "=" <value>

<type> ::= "STRING" | "INT" | "FLOAT"

<identifier> ::= [a-zA-Z_]\w*

<value> ::= <string> | <number>

<string> ::= "<text>"

<number> ::= <integer> | <float>

<integer> ::= \d+

Fig. 1. This figure shows the BNF rules that consist of variable
assignment statements and value representation, including STRING, INT,

FLOAT types, identifiers, strings, and numbers specific to the project.

Parsing is a fundamental component of a compiler or
interpreter, It's the stage that comes after lexical analysis (or
'lexing'), where the input code is divided into meaningful
tokens. The parser takes these tokens and, using the
language's grammar constructs an Abstract Syntax Tree
(AST). The AST represents the hierarchical structure of the
program, and this tree-like representation is used in the
subsequent stages of the compilation or interpretation
process [2].

There are various parsing techniques that can be
employed, often categorized as either top-down or bottom-up
approaches. Top-down parsers, like Recursive Descent
parsers, start at the root of the AST and work their way
down, while bottom-up parsers, like shift-reduce parsers,
start at the leaves and work their way up [3]. The choice of
parsing technique can depend on factors such as the
complexity of the language's grammar and the desired
efficiency of the parser.

Significant prior work in the field of parsing includes the
development of parsing algorithms like Earley's algorithm,
and tools like YACC (Yet ANother Compiler-Compiler) or
ANTLR (Another Tool for Language Recognition), which
are parser generators [4]. These works have contributed to
shaping the current landscape of compiler design and have
informed the methods used in this project, as discussed in
subsequent sections.

B. Lexical Analysis

Lexical analysis, also known as lexing, is an integral part
of the compilation process, acting as the first phase of
translating code. It takes raw source code as input and breaks
it into meaningful chunks or tokens. These tokens can
include various types such as identifiers, keywords,
separators, literals, and operators, among others [5].

One of the primary tools used in the lexing process is
regular expressions. Regular expressions provide a means to
describe patterns in text, making them ideally suited for
identifying the different types of tokens in source code based
on their patterns. Lexers often implement finite automata,
deterministic or non-deterministic, as a mechanism to
recognize these patterns and categorize the input text into the
corresponding tokens [5].

There exist numerous tools and techniques for
performing lexical analysis, with some of the most prevalent
being tools like Lex, Flex, or JLex. These are known as lexer
or scanner generators, taking as input a file containing
regular expressions and corresponding actions, and
outputting code for a lexer that performs the specified actions
when it encounters matches for the expressions [6].

Significant work in the field of lexical analysis has
provided various strategies and methodologies for tokenizing
code. These range from techniques for handling ambiguous
token definitions to ways of dealing with language-specific
quirks in the lexing process [6]. This existing body of
knowledge has significantly shaped the approach taken in
this project, as will be discussed in later sections.

C. Semantic Analysis and Code Generation in Compiler

Design and Optimization

The process of compiler design is an intricate one,
involving several stages to transform high-level source code
into machine-readable instructions. A compiler takes the
tokens generated by the lexical analyzer and, through syntax
and semantic analysis, generates an intermediate
representation of the code. This intermediate representation
is then optimized and finally transformed into machine code
[5]. Each stage of the compiler plays a crucial role in
generating efficient and correct machine code. Among these
stages, the semantic analyzer and code generation stand out
for their roles in improving the performance of the resulting
program. The semantic analyzer ensures the correct
interpretation of the code and performs static checks, while
the code generator transforms the intermediate representation
into machine code [5]. Compiler optimizations aim to
enhance the runtime speed, reduce binary size, or decrease
power consumption, all while maintaining the program's
original functionality. These optimizations can happen at
various levels, including the intermediate code level and the
machine code level, and can involve techniques such as dead
code elimination, loop optimization, and instruction
scheduling [5]. There exist numerous techniques and tools
for compiler design, including widely used compilers like
GCC, LLVM, and Java compiler. These tools have shaped
the field of compiler design and provided robust, efficient
mechanisms for translating high-level languages into
machine code [5]. Significant prior work in compiler design
has led to the development of various methodologies for
managing the complexity of translating high-level code into
efficient machine code. This research project builds upon
these existing techniques to create a compiler tailored to the
custom language developed.

D. Python in Compiler Design

Python, a high-level, interpreted programming language,
is renowned for its simplicity and wide usage. Its
straightforward syntax and semantics make it an excellent
choice for a myriad of applications, particularly in fields that
require rapid development and testing of complex algorithms
[7].

A major advantage of Python is its vast array of libraries
and tools that facilitate various aspects of programming. For
tasks related to language processing, Python provides several
built-in libraries for string processing, regular expressions,
and file I/O. These tools greatly simplify the process of
reading source code, identifying tokens, and writing output
files.

Python's capabilities make it particularly well-suited to
tasks related to language processing. Its powerful string
manipulation features and pattern-matching capabilities
simplify the implementation of complex language processing
algorithms. Additionally, Python's clear and concise syntax
promotes readable and maintainable code, a significant
advantage when designing and implementing the complex
structures often found in compilers.

In this project, Python was utilized to design and
implement the parser, lexer, and compiler for the custom
language. The simplicity of Python allowed for rapid
prototyping and testing of different language features and
compiler designs. Python's rich set of libraries simplified
many aspects of the project, from reading and tokenizing the

source code to writing the generated assembly code.
Furthermore, the readability of Python code greatly
facilitated the process of debugging and refining the
compiler or semantic analyzer [7].

III. DESIGN AND IMPLEMENTATION

Fig. 2. Flowchart depicting the translation process. The source code from

the 'example.kevin' file undergoes lexing, parsing, and compiling, resulting

in the output of assembly language.

A. Lexer Design and Implementation

The initial step in translating the custom language into
assembly language involved designing and implementing a
lexer. The lexer, alternatively referred to as a tokenizer or
scanner, is responsible for partitioning the input sequence
into token strings. The significance of this component cannot
be overstated, as it enables the subsequent elements of the
compiler, namely the parser and the code generator, to
handle the code in a structured and manageable fashion.

The custom language was read from a file with the
extension ".kevin". Each line of code was read individually
to ensure that each statement was handled separately, which
helped maintain the order of execution of the code.

The first task of the lexer was to split the input line into
individual words or components. This was accomplished by
slicing the string at each whitespace character and storing the
resulting substrings in a list. This method enabled me to
separate individual elements of the code like keywords,
identifiers, operators, and values, each of which plays a
crucial role in the meaning of the code.

Following the initial splitting of the input line, each item
in the list was then tokenized. Tokenization involved
categorizing each substring into a type that could be
understood by the subsequent stages of the semantic
analyzer. For instance, keywords like "if", "else", and
"while" were recognized and classified, and identifiers were
separated from their associated values.

 The design and implementation of the lexer were not
without their challenges. One of the primary challenges was

ensuring that the lexer accurately recognized all components
of the code, especially with respect to more complex
constructs like multi-character operators or identifiers with
special characters. Resolving this issue required thorough
testing and fine-tuning of the regular expressions used for
tokenization.

Another challenge was handling errors in the input code.
While the lexer aimed to be robust and handle as many
scenarios as possible, there were cases where the input code
did not conform to the expected structure. This necessitated
the design of error-handling mechanisms to inform the user
about the nature of the error and where it occurred in the
code [5].

Despite these challenges, the successful implementation
of the lexer provided a solid foundation for the rest of the
compiler. The lexer served as a bridge, translating the free-
form structure of the custom language into a more rigid and
easily processed format that could be used by the next stages
of the compiler.

B. Parser Design and Implementation

After lexing, the next step in translating the custom
language into assembly language was to parse the tokenized
output. The parser's primary role is to check the code for
syntactic correctness and generate an abstract syntax tree
(AST) to capture the hierarchical relationship between
different parts of the code.

Fig. 3. Example of a simple Abstract Syntax Tree (AST) for a simple math
expression "1 * 2 + 3". The AST illustrates the hierarchical structure of the

expression, demonstrating the multiplication and addition operations along

with their corresponding values.

In the context of the project, a top-down parsing
technique known as Recursive Descent Parsing was
implemented, as mentioned earlier. The parser takes the list
of tokens produced by the lexer as input and recursively
matches the tokens against the grammar rules of the custom
language. Each token is examined to determine its type (e.g.,
keyword, operator, identifier), and a corresponding node is
created in the AST. The parser ensures that the tokens

comply with the grammar rules, thereby confirming the
syntactic correctness of the input code [5].

The creation of the AST was a crucial part of the parsing
process. This tree-like data structure allowed me to capture
the hierarchical relationship between different parts of the
code. For instance, in an assignment statement, the variable
being assigned a value would be a parent node, with the
assigned value or expression being a child node.

The design and implementation of the parser were not
without challenges. Handling syntax errors in the input code
was a significant challenge. Unclosed brackets or missing
semicolons could disrupt the parsing process and lead to an
incorrect AST. To address this, error-handling mechanisms
were implemented in the parser to detect syntax errors and
report them to the user, indicating the type and location of
the error in the code [5].

Another challenge was ensuring that the AST correctly
represented the hierarchical structure of the code, especially
for complex constructs like nested if-else statements or
complex expressions. However, through careful design and
extensive testing, it was ensured that the parser correctly
built the Abstract Syntax Tree (AST) for a wide range of
code constructs.

The successful design and implementation of the parser
using Recursive Descent Parsing represented a significant
milestone in the project. With the Abstract Syntax Tree
(AST) in place, the next stage of the process, the compiler,
could be initiated.

C. Compiler Design and Implementation

The last crucial component in the translation pipeline of
the custom language is the compiler. Its role was to translate
the abstract syntax tree (AST) generated by the parser into
assembly language instructions that could be executed by the
target virtual machine.

The design of the compiler was intimately tied to the
specifics of both the source language (the custom language)
and the target language (the assembly language for the
virtual machine). For each type of node in the Abstract
Syntax Tree (AST), a corresponding rule was defined in the
compiler to govern its translation into assembly code [8].

The compiler was implemented in Python and worked by
traversing the AST generated by the parser. For each node
encountered during this traversal, the compiler produced the
corresponding assembly code according to the translation
rules defined.

The process of implementing the compiler posed several
challenges. One major challenge was dealing with language
constructs that have no direct equivalent in the target
assembly language. For instance, high-level control
structures (like loops or conditional branches) had to be
translated into sequences of low-level jumps and
comparisons.

Another challenge was managing the allocation and
deallocation of memory on the virtual machine. A strategy
had to be devised to efficiently handle memory management
and ensure the correct execution of the generated assembly
code.

Despite these challenges, the implementation of a
compiler capable of translating a wide range of custom

language constructs into assembly language was successfully
achieved. This marked the final step in the process of
translating code written in the custom language into a form
that could be executed by a virtual machine, thus fulfilling
the main objective of this research project.

IV. TESTING AND RESULTS

A. Testing Procedures

A thorough testing process is indispensable in the
development of any language processing tool, and this
project was no exception. The objective of this testing phase
was to authenticate the functionality of the toolset and
identify potential areas for improvement.

The custom language was put through a rigorous set of
test cases to check its syntax and semantics. The test cases
varied from simple programs that evaluated individual
language features to complex programs that integrated
multiple features.

During the testing of the lexer, each generated token was
printed out. This allowed for a detailed visual verification
process, ensuring that the tokenized output adhered to the
syntax of the custom language.

 Similarly, for the parser, tests were executed to confirm
that it could build an accurate AST from a range of code
constructs and accurately identify syntax errors.

The compiler, which translates the AST into assembly
language instructions, underwent a similarly exhaustive
testing procedure. The generated assembly code was
executed on the target virtual machine, and the output was
then compared with the expected results to verify the
translation process's accuracy.

B. Results

Although the custom language is smaller in scale
compared to full-fledged programming languages, the testing
phase yielded promising results, reaffirming the toolset's
effectiveness in translating code into assembly language.

Both the lexer and parser exhibited resilience and
accuracy across diverse code constructs, successfully
identifying and reporting errors.

The compiler effectively translated the Abstract Syntax
Tree (AST) into assembly language instructions, producing
expected results when executed on the target virtual machine.
While these outcomes highlight the successful translation
process, testing also identified areas for further
enhancements. Certain complex programs revealed
discrepancies in the execution of the assembly code,
indicating potential improvement areas in the compiler's
design.

In summary, the testing phase confirmed the efficacy of
the lexer, parser, and compiler in translating the custom
language into assembly language. Despite the smaller scale
of the project, the results provide a solid foundation for
potential future expansions and refinements to the toolset.

V. DISCUSSION

A. Interpretation of Results

The results from the testing phase provided several
insights into the functionality and performance of the lexer,
parser, and compiler. Notably, the toolset demonstrated
promising capabilities in translating the custom language into
assembly language, despite operating on a smaller scale
compared to full-fledged programming languages. This
could be indicative of Python's robustness in building
language processing tools and its potential in the
development of domain-specific languages.

Compared to existing research or applications, this
project reinforces the utility of using high-level languages
like Python to construct language processing tools, especially
for smaller, custom languages. The efficiency and readability
of Python code played a key role in the successful
implementation and testing of the toolset.

B. Advantages and Disadvantages

One significant advantage of this system is its specificity
to the custom language, enabling seamless translation and
execution without the need for extensive modifications or
adjustments typically associated with standard compilers.

However, this specificity poses a challenge as the
toolset's efficiency is limited to the custom language, lacking
the universality of traditional compilers. Adapting it to other
languages or more complex programming constructs will
require significant future development efforts.

C. Potential Applications

Despite being developed on a smaller scale, the toolset
has potential applications in educational and research
settings. It can be used as a practical teaching tool for
students learning about language processing, compilers, and
assembly language. It also opens avenues for further research
into language design, potentially sparking the development
of other custom languages with unique features.

VI. CONCLUSION AND FUTURE WORK

A. Testing Procedures

This research aimed to explore the design and
implementation of a custom programming language and its
translation toolset, which includes a lexer, parser, and code
generator. The language processing pipeline was developed
using Python's robust capabilities to enable the translation of
the custom language into assembly language. Through
rigorous testing, the system's effectiveness and reliability
were verified. Despite operating on a smaller scale compared
to full-fledged programming languages, the encouraging
results established a strong foundation for future
enhancements.

B. Implications

The successful implementation of this project contributes
to our understanding of language processing tools and their
development. It shows the potential for creating custom,
domain-specific languages, and emphasizes Python's utility
in this domain. Moreover, the upshot from this research
might provide insights for future efforts in the design and

implementation of programming languages and their
respective compilers.

C. Testing Procedures

A thorough testing process is indispensable in the
development of any language processing tool, and this
project was no exception. The objective of this testing phase
was to authenticate the functionality of the toolset and
identify potential areas for improvements.

The compiler, which translates the AST into assembly
language instructions, underwent a similarly exhaustive
testing procedure. The generated assembly code was
executed on the target virtual machine, and the output was
then compared with the expected results to verify the
translation process's accuracy.

ACKNOWLEDGMENT

I personally would like to extend my profound
appreciation to my mentor, Dr. Art Hanna, whose specialized
knowledge in code translators was invaluable throughout the
course of this project. His expert guidance, constant support,
and insightful feedback were instrumental in shaping this
research and the development of the toolset.

Special thanks to the McNair program at St. Mary’s
University, which provided essential resources and a
supportive environment that made this research possible.
Their contribution to this project was fundamental in
navigating the complexities of language processing and
compiler design. Lastly, I am grateful for the supportive
academic environment provided by St. Mary's University and
my peers. This research would not have been possible
without the nurturing atmosphere, dedicated faculty, and
diverse academic resources available at the institution.

REFERENCES

[1] D. D. McCracken, V. Profile, E. D. Reilly, and O. M. A. Metrics,

“Backus-Naur Form (BNF): Encyclopedia of computer science,” DL
Books, https://dl.acm.org/doi/abs/10.5555/1074100.1074155

[2] Bangare, S. L., et al. "Code Parser For Object Oriented Software
Modularization" International Journal of Engineering Science and
Technology, vol. 2, no. 12, 2010, pp. 7262-7265

[3] Cooper, K. D., & Torczon, L. (2010). Introduction to Parsing Comp
412 [PowerPoint slides]. Rice University. Retrieved from
https://homepage.cs.uri.edu/faculty/hamel/courses/2013/spring2013/c
sc502/presentations/parsing-presentation.pdf

[4] Fodor, P. 2022. Programming Language Syntax [PowerPoint slides].
Stony Brook University. Retrieved from
https://www3.cs.stonybrook.edu/~pfodor/courses/CSE260/_L02_Synt
ax.pdf

[5] A. W. Appel and M. Ginsburg, Modern Compiler Implementation in
C. Cambridge: Cambridge Univ. Press, 2010.

[6] E. J. Berk, “JLex: A lexical analyzer generator for Java (TM),”
Princeton University,
https://www.cs.princeton.edu/~appel/modern/java/JLex/current/manu
al.html#SECTION1 (accessed Jul. 4, 2023).

[7] A. Sharma, F. Khan, D. Sharma, and S. Gupta, "Python: The
Programming Language of Future," IJIRT, vol. 6, no. 12, May 2020,
ISSN: 2349-6002

[8] P. Stanley-Marbell, "Sal/Svm: an assembly language and virtual
machine for computing with non-enumerated sets," in VMIL '10:
Virtual Machines and Intermediate Languages, October 2010, Article
No.: 1, pp. 1-10, doi: 10.1145/1941054.1941055, published on 17
October 2010.

