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Abstract—This paper presents a Python-based toolset for 

translating custom language code into assembly language for a 

virtual machine. The toolset includes a lexer module for 

tokenizing the code, a parser module for generating an abstract 

syntax tree (AST), and a compiler or semantic analyzer module 

for translating the AST into assembly language instructions. The 

research focuses on the design and implementation of these 

components, utilizing top-down recursive parsing. Extensive 

testing ensures accurate translation and execution of custom 

language code. The toolset's flexibility enables future 

enhancements and support for diverse virtual machine 

architectures. The results demonstrate successful translation, 

highlighting the power and versatility of the developed toolset. 

This research advances language processing and compiler 

design, facilitating the seamless execution of domain-specific 

languages on virtual hardware platforms. 
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I. INTRODUCTION 

A. Research Topic and Background 

Computer programming languages are essential tools in 
the field of software development. They enable programmers 
to develop a wide range of systems and applications that are 
used in our daily lives. These languages have allowed 
innovators to communicate their ideas to machines in a 
human-readable format. However, computers can only 
understand instructions in a specific format known as 
machine code or machine language. Machine code is a low-
level language that computers can directly understand and 
execute and can be exhibited in diverse variations consisting 
of but not limited to binary, assembly language, 
hexadecimal, and octal.   

B. Research Objective and Significance 

The research objective is to develop a comprehensive 
toolset for translating code written in the custom language 
into assembly language for a virtual machine. By designing 
and implementing a robust parser, lexer, and compiler for a 
general-purpose custom language, this research aims to 
enable seamless execution of programs on virtual hardware 
platforms. This toolset will empower developers to 
efficiently create and execute specialized applications, 
expanding the possibilities of application development and 
enhancing software performance. The significance of this 
research lies in its potential to bridge the gap between high-
level custom languages and low-level machine code, offering 
a practical solution for efficient code translation and 
execution. By addressing this challenge, this research 
contributes to the advancement of language processing and 
compiler design, facilitating the development of domain-

specific languages and their seamless execution on virtual 
hardware platforms. 

C. Research Approach and Methodology 

The project follows a systematic approach to designing 
and implementing a comprehensive toolset for translating 
code written in a custom general-purpose language into 
assembly language using Python. The methodology involves 
several key steps. Firstly, the project begins with the design 
phase, where the lexer module is specified to identify 
meaningful tokens based on the predefined grammar rules 
and regular expressions. Once the lexer was developed, a 
parser module was implemented to generate an abstract 
syntax tree (AST), representing the hierarchical structure of 
the code according to the grammar defined in Backus-Naur 
Form (BNF). Next, the compiler or semantic analyzer 
module is implemented to traverse and translate the AST into 
assembly language instructions specific to a virtual machine. 
Extensive testing is conducted using a comprehensive set of 
test cases that cover various grammar and semantic aspects 
of the custom language. The testing phase ensures accurate 
translation and execution of custom language code into 
assembly language, validating the effectiveness and 
reliability of the parser, lexer, and compiler modules. By 
following this project approach and methodology, a robust 
and efficient toolset is created for seamless code translation 
and execution using Python, specifically tailored for the 
custom language developed. 

II. LITERATURE REVIEW 

A. Language Design and Parsing 

In the process of designing a programming language, a 
crucial aspect to consider is the language's grammar. The 
grammar, often defined using a formal notation such as 
Backus-Naur Form (BNF), dictates the set of rules that 
determine syntactically valid programs in that language [1]. 
These rules provide the structured blueprint that a parser will 
use to interpret the code. 

 

<assignment> ::= <type> <identifier> "=" <value> 

<type> ::= "STRING" | "INT" | "FLOAT" 

<identifier> ::= [a-zA-Z_]\w* 

<value> ::= <string> | <number> 

<string> ::= "<text>" 

<number> ::= <integer> | <float> 

<integer> ::= \d+ 



Fig. 1. This figure shows the BNF rules that consist of variable 
assignment statements and value representation, including STRING, INT, 

FLOAT types, identifiers, strings, and numbers specific to the project. 

Parsing is a fundamental component of a compiler or 
interpreter, It's the stage that comes after lexical analysis (or 
'lexing'), where the input code is divided into meaningful 
tokens. The parser takes these tokens and, using the 
language's grammar constructs an Abstract Syntax Tree 
(AST). The AST represents the hierarchical structure of the 
program, and this tree-like representation is used in the 
subsequent stages of the compilation or interpretation 
process [2]. 

There are various parsing techniques that can be 
employed, often categorized as either top-down or bottom-up 
approaches. Top-down parsers, like Recursive Descent 
parsers, start at the root of the AST and work their way 
down, while bottom-up parsers, like shift-reduce parsers, 
start at the leaves and work their way up [3]. The choice of 
parsing technique can depend on factors such as the 
complexity of the language's grammar and the desired 
efficiency of the parser. 

Significant prior work in the field of parsing includes the 
development of parsing algorithms like Earley's algorithm, 
and tools like YACC (Yet ANother Compiler-Compiler) or 
ANTLR (Another Tool for Language Recognition), which 
are parser generators [4]. These works have contributed to 
shaping the current landscape of compiler design and have 
informed the methods used in this project, as discussed in 
subsequent sections. 

B. Lexical Analysis  

Lexical analysis, also known as lexing, is an integral part 
of the compilation process, acting as the first phase of 
translating code. It takes raw source code as input and breaks 
it into meaningful chunks or tokens. These tokens can 
include various types such as identifiers, keywords, 
separators, literals, and operators, among others [5]. 

One of the primary tools used in the lexing process is 
regular expressions. Regular expressions provide a means to 
describe patterns in text, making them ideally suited for 
identifying the different types of tokens in source code based 
on their patterns. Lexers often implement finite automata, 
deterministic or non-deterministic, as a mechanism to 
recognize these patterns and categorize the input text into the 
corresponding tokens [5]. 

There exist numerous tools and techniques for 
performing lexical analysis, with some of the most prevalent 
being tools like Lex, Flex, or JLex. These are known as lexer 
or scanner generators, taking as input a file containing 
regular expressions and corresponding actions, and 
outputting code for a lexer that performs the specified actions 
when it encounters matches for the expressions [6]. 

Significant work in the field of lexical analysis has 
provided various strategies and methodologies for tokenizing 
code. These range from techniques for handling ambiguous 
token definitions to ways of dealing with language-specific 
quirks in the lexing process [6]. This existing body of 
knowledge has significantly shaped the approach taken in 
this project, as will be discussed in later sections. 

C. Semantic Analysis and Code Generation in Compiler 

Design and Optimization 

The process of compiler design is an intricate one, 
involving several stages to transform high-level source code 
into machine-readable instructions. A compiler takes the 
tokens generated by the lexical analyzer and, through syntax 
and semantic analysis, generates an intermediate 
representation of the code. This intermediate representation 
is then optimized and finally transformed into machine code 
[5]. Each stage of the compiler plays a crucial role in 
generating efficient and correct machine code. Among these 
stages, the semantic analyzer and code generation stand out 
for their roles in improving the performance of the resulting 
program. The semantic analyzer ensures the correct 
interpretation of the code and performs static checks, while 
the code generator transforms the intermediate representation 
into machine code [5]. Compiler optimizations aim to 
enhance the runtime speed, reduce binary size, or decrease 
power consumption, all while maintaining the program's 
original functionality. These optimizations can happen at 
various levels, including the intermediate code level and the 
machine code level, and can involve techniques such as dead 
code elimination, loop optimization, and instruction 
scheduling [5]. There exist numerous techniques and tools 
for compiler design, including widely used compilers like 
GCC, LLVM, and Java compiler. These tools have shaped 
the field of compiler design and provided robust, efficient 
mechanisms for translating high-level languages into 
machine code [5]. Significant prior work in compiler design 
has led to the development of various methodologies for 
managing the complexity of translating high-level code into 
efficient machine code. This research project builds upon 
these existing techniques to create a compiler tailored to the 
custom language developed. 

D. Python in Compiler Design 

Python, a high-level, interpreted programming language, 
is renowned for its simplicity and wide usage. Its 
straightforward syntax and semantics make it an excellent 
choice for a myriad of applications, particularly in fields that 
require rapid development and testing of complex algorithms 
[7]. 

A major advantage of Python is its vast array of libraries 
and tools that facilitate various aspects of programming. For 
tasks related to language processing, Python provides several 
built-in libraries for string processing, regular expressions, 
and file I/O. These tools greatly simplify the process of 
reading source code, identifying tokens, and writing output 
files. 

Python's capabilities make it particularly well-suited to 
tasks related to language processing. Its powerful string 
manipulation features and pattern-matching capabilities 
simplify the implementation of complex language processing 
algorithms. Additionally, Python's clear and concise syntax 
promotes readable and maintainable code, a significant 
advantage when designing and implementing the complex 
structures often found in compilers. 

In this project, Python was utilized to design and 
implement the parser, lexer, and compiler for the custom 
language. The simplicity of Python allowed for rapid 
prototyping and testing of different language features and 
compiler designs. Python's rich set of libraries simplified 
many aspects of the project, from reading and tokenizing the 



source code to writing the generated assembly code. 
Furthermore, the readability of Python code greatly 
facilitated the process of debugging and refining the 
compiler or semantic analyzer [7]. 

 

III. DESIGN AND IMPLEMENTATION 

 

Fig. 2. Flowchart depicting the translation process. The source code from 

the 'example.kevin' file undergoes lexing, parsing, and compiling, resulting 

in the output of assembly language. 

A. Lexer Design and Implementation  

The initial step in translating the custom language into 
assembly language involved designing and implementing a 
lexer. The lexer, alternatively referred to as a tokenizer or 
scanner, is responsible for partitioning the input sequence 
into token strings. The significance of this component cannot 
be overstated, as it enables the subsequent elements of the 
compiler, namely the parser and the code generator, to 
handle the code in a structured and manageable fashion. 

The custom language was read from a file with the 
extension ".kevin". Each line of code was read individually 
to ensure that each statement was handled separately, which 
helped maintain the order of execution of the code. 

The first task of the lexer was to split the input line into 
individual words or components. This was accomplished by 
slicing the string at each whitespace character and storing the 
resulting substrings in a list. This method enabled me to 
separate individual elements of the code like keywords, 
identifiers, operators, and values, each of which plays a 
crucial role in the meaning of the code. 

Following the initial splitting of the input line, each item 
in the list was then tokenized. Tokenization involved 
categorizing each substring into a type that could be 
understood by the subsequent stages of the semantic 
analyzer. For instance, keywords like "if", "else", and 
"while" were recognized and classified, and identifiers were 
separated from their associated values. 

 The design and implementation of the lexer were not 
without their challenges. One of the primary challenges was 

ensuring that the lexer accurately recognized all components 
of the code, especially with respect to more complex 
constructs like multi-character operators or identifiers with 
special characters. Resolving this issue required thorough 
testing and fine-tuning of the regular expressions used for 
tokenization. 

Another challenge was handling errors in the input code. 
While the lexer aimed to be robust and handle as many 
scenarios as possible, there were cases where the input code 
did not conform to the expected structure. This necessitated 
the design of error-handling mechanisms to inform the user 
about the nature of the error and where it occurred in the 
code [5]. 

Despite these challenges, the successful implementation 
of the lexer provided a solid foundation for the rest of the 
compiler. The lexer served as a bridge, translating the free-
form structure of the custom language into a more rigid and 
easily processed format that could be used by the next stages 
of the compiler. 

B. Parser Design and Implementation 

After lexing, the next step in translating the custom 
language into assembly language was to parse the tokenized 
output. The parser's primary role is to check the code for 
syntactic correctness and generate an abstract syntax tree 
(AST) to capture the hierarchical relationship between 
different parts of the code.  

 

 

Fig. 3. Example of a simple Abstract Syntax Tree (AST) for a simple math 
expression "1 * 2 + 3". The AST illustrates the hierarchical structure of the 

expression, demonstrating the multiplication and addition operations along 

with their corresponding values. 

In the context of the project, a top-down parsing 
technique known as Recursive Descent Parsing was 
implemented, as mentioned earlier. The parser takes the list 
of tokens produced by the lexer as input and recursively 
matches the tokens against the grammar rules of the custom 
language. Each token is examined to determine its type (e.g., 
keyword, operator, identifier), and a corresponding node is 
created in the AST. The parser ensures that the tokens 



comply with the grammar rules, thereby confirming the 
syntactic correctness of the input code [5].  

The creation of the AST was a crucial part of the parsing 
process. This tree-like data structure allowed me to capture 
the hierarchical relationship between different parts of the 
code. For instance, in an assignment statement, the variable 
being assigned a value would be a parent node, with the 
assigned value or expression being a child node.  

The design and implementation of the parser were not 
without challenges. Handling syntax errors in the input code 
was a significant challenge. Unclosed brackets or missing 
semicolons could disrupt the parsing process and lead to an 
incorrect AST. To address this, error-handling mechanisms 
were implemented in the parser to detect syntax errors and 
report them to the user, indicating the type and location of 
the error in the code [5]. 

Another challenge was ensuring that the AST correctly 
represented the hierarchical structure of the code, especially 
for complex constructs like nested if-else statements or 
complex expressions. However, through careful design and 
extensive testing, it was ensured that the parser correctly 
built the Abstract Syntax Tree (AST) for a wide range of 
code constructs. 

The successful design and implementation of the parser 
using Recursive Descent Parsing represented a significant 
milestone in the project. With the Abstract Syntax Tree 
(AST) in place, the next stage of the process, the compiler, 
could be initiated. 

C. Compiler Design and Implementation  

The last crucial component in the translation pipeline of 
the custom language is the compiler. Its role was to translate 
the abstract syntax tree (AST) generated by the parser into 
assembly language instructions that could be executed by the 
target virtual machine. 

The design of the compiler was intimately tied to the 
specifics of both the source language (the custom language) 
and the target language (the assembly language for the 
virtual machine). For each type of node in the Abstract 
Syntax Tree (AST), a corresponding rule was defined in the 
compiler to govern its translation into assembly code [8]. 

The compiler was implemented in Python and worked by 
traversing the AST generated by the parser. For each node 
encountered during this traversal, the compiler produced the 
corresponding assembly code according to the translation 
rules defined. 

The process of implementing the compiler posed several 
challenges. One major challenge was dealing with language 
constructs that have no direct equivalent in the target 
assembly language. For instance, high-level control 
structures (like loops or conditional branches) had to be 
translated into sequences of low-level jumps and 
comparisons. 

Another challenge was managing the allocation and 
deallocation of memory on the virtual machine. A strategy 
had to be devised to efficiently handle memory management 
and ensure the correct execution of the generated assembly 
code.  

Despite these challenges, the implementation of a 
compiler capable of translating a wide range of custom 

language constructs into assembly language was successfully 
achieved. This marked the final step in the process of 
translating code written in the custom language into a form 
that could be executed by a virtual machine, thus fulfilling 
the main objective of this research project. 

 

IV. TESTING AND RESULTS 

A. Testing Procedures 

A thorough testing process is indispensable in the 
development of any language processing tool, and this 
project was no exception. The objective of this testing phase 
was to authenticate the functionality of the toolset and 
identify potential areas for improvement.  

The custom language was put through a rigorous set of 
test cases to check its syntax and semantics. The test cases 
varied from simple programs that evaluated individual 
language features to complex programs that integrated 
multiple features.  

During the testing of the lexer, each generated token was 
printed out. This allowed for a detailed visual verification 
process, ensuring that the tokenized output adhered to the 
syntax of the custom language. 

 Similarly, for the parser, tests were executed to confirm 
that it could build an accurate AST from a range of code 
constructs and accurately identify syntax errors.  

The compiler, which translates the AST into assembly 
language instructions, underwent a similarly exhaustive 
testing procedure. The generated assembly code was 
executed on the target virtual machine, and the output was 
then compared with the expected results to verify the 
translation process's accuracy. 

B. Results 

Although the custom language is smaller in scale 
compared to full-fledged programming languages, the testing 
phase yielded promising results, reaffirming the toolset's 
effectiveness in translating code into assembly language. 

Both the lexer and parser exhibited resilience and 
accuracy across diverse code constructs, successfully 
identifying and reporting errors.  

The compiler effectively translated the Abstract Syntax 
Tree (AST) into assembly language instructions, producing 
expected results when executed on the target virtual machine. 
While these outcomes highlight the successful translation 
process, testing also identified areas for further 
enhancements. Certain complex programs revealed 
discrepancies in the execution of the assembly code, 
indicating potential improvement areas in the compiler's 
design.  

In summary, the testing phase confirmed the efficacy of 
the lexer, parser, and compiler in translating the custom 
language into assembly language. Despite the smaller scale 
of the project, the results provide a solid foundation for 
potential future expansions and refinements to the toolset. 



V. DISCUSSION 

A. Interpretation of Results 

The results from the testing phase provided several 
insights into the functionality and performance of the lexer, 
parser, and compiler. Notably, the toolset demonstrated 
promising capabilities in translating the custom language into 
assembly language, despite operating on a smaller scale 
compared to full-fledged programming languages. This 
could be indicative of Python's robustness in building 
language processing tools and its potential in the 
development of domain-specific languages.  

Compared to existing research or applications, this 
project reinforces the utility of using high-level languages 
like Python to construct language processing tools, especially 
for smaller, custom languages. The efficiency and readability 
of Python code played a key role in the successful 
implementation and testing of the toolset.  

B. Advantages and Disadvantages 

One significant advantage of this system is its specificity 
to the custom language, enabling seamless translation and 
execution without the need for extensive modifications or 
adjustments typically associated with standard compilers.  

However, this specificity poses a challenge as the 
toolset's efficiency is limited to the custom language, lacking 
the universality of traditional compilers. Adapting it to other 
languages or more complex programming constructs will 
require significant future development efforts. 

C. Potential Applications 

Despite being developed on a smaller scale, the toolset 
has potential applications in educational and research 
settings. It can be used as a practical teaching tool for 
students learning about language processing, compilers, and 
assembly language. It also opens avenues for further research 
into language design, potentially sparking the development 
of other custom languages with unique features. 

VI. CONCLUSION AND FUTURE WORK 

A. Testing Procedures 

This research aimed to explore the design and 
implementation of a custom programming language and its 
translation toolset, which includes a lexer, parser, and code 
generator. The language processing pipeline was developed 
using Python's robust capabilities to enable the translation of 
the custom language into assembly language. Through 
rigorous testing, the system's effectiveness and reliability 
were verified. Despite operating on a smaller scale compared 
to full-fledged programming languages, the encouraging 
results established a strong foundation for future 
enhancements.  

B. Implications 

The successful implementation of this project contributes 
to our understanding of language processing tools and their 
development. It shows the potential for creating custom, 
domain-specific languages, and emphasizes Python's utility 
in this domain. Moreover, the upshot from this research 
might provide insights for future efforts in the design and 

implementation of programming languages and their 
respective compilers. 

C. Testing Procedures 

A thorough testing process is indispensable in the 
development of any language processing tool, and this 
project was no exception. The objective of this testing phase 
was to authenticate the functionality of the toolset and 
identify potential areas for improvements. 

The compiler, which translates the AST into assembly 
language instructions, underwent a similarly exhaustive 
testing procedure. The generated assembly code was 
executed on the target virtual machine, and the output was 
then compared with the expected results to verify the 
translation process's accuracy. 

ACKNOWLEDGMENT 

I personally would like to extend my profound 
appreciation to my mentor, Dr. Art Hanna, whose specialized 
knowledge in code translators was invaluable throughout the 
course of this project. His expert guidance, constant support, 
and insightful feedback were instrumental in shaping this 
research and the development of the toolset.  

Special thanks to the McNair program at St. Mary’s 
University, which provided essential resources and a 
supportive environment that made this research possible. 
Their contribution to this project was fundamental in 
navigating the complexities of language processing and 
compiler design. Lastly, I am grateful for the supportive 
academic environment provided by St. Mary's University and 
my peers. This research would not have been possible 
without the nurturing atmosphere, dedicated faculty, and 
diverse academic resources available at the institution. 

REFERENCES 

 
[1] D. D. McCracken, V. Profile, E. D. Reilly, and O. M. A. Metrics, 

“Backus-Naur Form (BNF): Encyclopedia of computer science,” DL 
Books, https://dl.acm.org/doi/abs/10.5555/1074100.1074155  

[2] Bangare, S. L., et al. "Code Parser For Object Oriented Software 
Modularization" International Journal of Engineering Science and 
Technology, vol. 2, no. 12, 2010, pp. 7262-7265 

[3] Cooper, K. D., & Torczon, L. (2010). Introduction to Parsing Comp 
412 [PowerPoint slides]. Rice University. Retrieved from 
https://homepage.cs.uri.edu/faculty/hamel/courses/2013/spring2013/c
sc502/presentations/parsing-presentation.pdf 

[4] Fodor, P. 2022. Programming Language Syntax [PowerPoint slides]. 
Stony Brook University. Retrieved from 
https://www3.cs.stonybrook.edu/~pfodor/courses/CSE260/_L02_Synt
ax.pdf 

[5] A. W. Appel and M. Ginsburg, Modern Compiler Implementation in 
C. Cambridge: Cambridge Univ. Press, 2010.  

[6] E. J. Berk, “JLex: A lexical analyzer generator for Java (TM),” 
Princeton University, 
https://www.cs.princeton.edu/~appel/modern/java/JLex/current/manu
al.html#SECTION1 (accessed Jul. 4, 2023). 

[7] A. Sharma, F. Khan, D. Sharma, and S. Gupta, "Python: The 
Programming Language of Future," IJIRT, vol. 6, no. 12, May 2020, 
ISSN: 2349-6002 

[8] P. Stanley-Marbell, "Sal/Svm: an assembly language and virtual 
machine for computing with non-enumerated sets," in VMIL '10: 
Virtual Machines and Intermediate Languages, October 2010, Article 
No.: 1, pp. 1-10, doi: 10.1145/1941054.1941055, published on 17 
October 2010. 


